首页> 外文OA文献 >Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin-spin interactions
【2h】

Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin-spin interactions

机译:强磁场中核酸自对准对解释或间接自旋 - 自旋相互作用的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Heteronuclear and homonuclear direct (D) and indirect (J) spin-spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin-spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely 1JCH and 3JHH couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over- or under-estimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy.
机译:异核和同核的直接(D)和间接(J)自旋-自旋相互作用是有关核酸(NA)的结构信息的重要来源。 D和J相互作用的哈密顿量具有相同的功能形式。因此,实验测得的表观自旋-自旋偶联常数对应于J和D的总和。在生物分子NMR研究中,通常认为由于随机分子的翻滚,有效抵消了Js的偶极作用。但是,在强磁场(例如用于NMR分析的磁场)中,NA片段的翻转是各向异性的,因为NA的固有磁化率会引起与外部磁场的相互作用。这种运动各向异性是D对Js的非零贡献的原因。在这里,我们根据磁场强度,温度和NA片段大小计算了33种与结构相关的标量耦合常数的场致D贡献。我们确定了两类Js,即1JCH和3JHH耦合,它们的定量解释明显受NA运动各向异性的影响。对于这些耦合,发现在J耦合确定中,磁场引起的偶极贡献超出了典型的实验误差两倍或更多,并且产生了J耦合相关的扭转角的高估或低估,尤其是在磁场强度> 12 T且NA片段长于12 bp的情况下。我们显示,如果未正确考虑对J的非零D贡献,它们可能会在使用溶液NMR光谱的NA研究中引起结构伪影/偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号